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Analytically Determined Quasi-Static Parameters of
Shielded or Open Multiconductor Microstrip Lines

Dorel Homentcovschi,Member, IEEE, and Radu Oprea

Abstract—An exact analytical expression for the capacitance
matrix of a shielded or open multiconductor microstrip structure
is derived by solving the system’s dual integral equations by
constructing a Volterra boundary-value problem (BVP). The
solution is expressed in terms of infinite matrices with very
good convergence properties. This new approach uses a series of
Bessel functions rather than trigonometric series to approximate
the solution which results in an efficient algorithm. Simplified
formulas are given for the even and odd capacitance of symmetric
coupled microstrip lines and compared to the results given by
the finite analytical solution available in this particular case.
Numerical examples demonstrate that the method yields accurate
results and is computationally effective for structures having a
large number of conductors.

Index Terms—Boundary-value problems, integral equations,
microstrip, multiconductor transmission lines.

I. INTRODUCTION

M ICROSTRIP transmission lines have received much
attention in the technical literature in the last 30 years.

Most of the efforts were dedicated to the analysis and elec-
trical characterization of single or coupled microstrip lines.
The continual increase of system clock speed in integrated
circuit technology has made multiconductor transmission-lines
analysis a vital tool not only for microwave applications, e.g.,
parallel coupled filters and directional couplers, but now also
for high-speed digital integrated circuits (IC’s).

Let us briefly review some theoretical methods relating
to single and multiconductor microstrip lines. Wheeler [1]
used approximate conformal mapping and an interpolation
technique to calculate the capacity of inhomogeneous single
microstrip lines, and Wan [17] used a similar method to
accurately determine the quasi-static parameters of coupled
microstrip lines. Analytical or quasi-analytical solutions have
been provided for a limited number of cases and for certain
particular geometries [8]–[10]. Bryant and Weiss [2] treated
the problem by the method of moments and dielectric Green’s
function. Yamashita and Mittra [3] presented an analysis
based on a variational principle. Analysis of various planar
transmission lines have also been carried out in the spectral
domain by Itoh and Mittra [4].
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Fikioris et al. [5] have given an exact solution for the
shielded printed microstrip lines by the Carleman–Vekua
method. Drakeet al. [6] presented an improved spectral-
domain method for coplanar multiconductor boxed microstrip
lines. In [7], an analytical method was given for determining
the capacitance matrix of boxed multiconductor planar and
cylindrical lines. In [8], an analytical solution is given to the
single shielded or open microstrip problem based on a special
representation formula.

This paper presents a new analytical determination for the
capacitance matrix of the planar shielded or open multicon-
ductor microstrip lines embedded in a multilayered medium.
This paper expands on the treatment in [7], where only a
limited lateral structure was considered. As a consequence of
the domain limitation, the electrical potential was expressed
as a Fourier series. The boundaries conditions led to a dual
series equation system, which eventually was transformed into
a Volterra problem. This paper addresses the more difficult
problem of the unlimited lateral domains. The electrical po-
tential is expressed as a Fourier integral of the spectral-domain
potential and the boundary conditions lead to a system of dual
integral equations. The unknown spectral function is developed
into a special sum of weighted Bessel functions. This sum
fulfills exactly the boundary conditions everywhere except
at a finite interval. Some subsequent transformations leads
to a Volterra boundary-value problem (BVP). The particular
expansion permits a drastic reduction of the number of terms
necessary to be taken into account in order to obtain an
accurate solution. Due to the reduced dimension of the system,
this method is more efficient than the previous method for
boxed structures. This method can be extended to support
multilayer structures and noncoplanar strips as was done in
[7]. Due to the similarity, the extension is not presented.

Section II describes the geometry of the shielded multicon-
ductor microstrip line. The problem is then formulated as a
dual integral equation system, whose solution is expressed
by a special representation formula, which transforms the
mentioned system into an infinite system of algebraic equa-
tions. This solution yields the Maxwell capacitance matrix
of the multiconductor microstrip line. Simplified relations are
then given for the even and odd capacitance of symmetric
coupled microstrip. Our simplified relations are compared to
an analytical solution of a particular case in Section IV. Also
addressed is the computation time for our present method
versus that of [7], as well as a comparison between the
solutions obtained by our present method with those obtained
in some previously published works.
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Fig. 1. Cross section of the multicondutor microstrip structure.

II. THE GEOMETRY OF THEPROBLEM

The cross section of the shielded multiconductor microstrip
line to be analyzed in this paper is shown in Fig. 1. It
consists of conducting strips of zero thickness

, with finite widths , separated by
finite gaps , laying on a dielectric substrate be-
tween two parallel ground planes. The structure is considered
infinite in the -direction. The scale and the origin are taken to
make and . The relative dielectric constants

and and the dielectric thickness and of domains
and are arbitrary. In particular, for the open

multiconductor microstrip is obtained.
We give the solution for the multiconductor microstrip

problem considering only two dielectric substrates.

III. A NALYSIS OF THE MULTICONDUCTOR MICROSTRIP LINE

We consider the solution of the microstrip problem in the
“quasi-static” approximation, i.e., for the frequency range in
which propagation may be regarded as quasi-TEM. Under this
approximation, the analysis of a multiconductor microstrip line
is reduced to the determination of the Maxwell capacitance
matrix per unit length. The full-wave solution can be obtained
based on the “quasi-static” solution proposed in this paper. The
authors will present a full wave solution in a future paper.

In the quasi-TEM assumption, the electric field in domains
and can be expressed with the aid of the electrostatic

potential and as follows:

(1)

(2)

The functions and vanish on the
planes and , respectively, and satisfy
the potential continuity condition on the plane . For

and , the potential is constant due to the
conducting strip, and the first integral equation of the problem
is

(3)

On each unit length of theth strip there is a charge

and the sum of all charges is denoted . An
integration with respect to of the charge density in the plane

yields an expression representing the total charge, up to
an additive constant. The condition that the total charge must
be constant for corresponding to the gaps give the second
integral equation

(4)

where for and for .
We put

(5)

where

(6)

The function has an exponentially decay to zero for
large values of the variable . As it has been shown in
[7], the multilayer structures can be analyzed by this method
modifying only the function .

We separate the real and the imaginary part of
and we take into account the

evenness of the real part and the oddness of the imaginary
part of .

Hence, (3) and (4) become

(7)

(8)

Relations (7) and (8) are the system of dual integral equations
which solve the problem.

We associate to any point the angle , and
the complex point , and to any point the
angle , and the complex point .

We look for the solution of the dual integral equations
system (7) and (8) in the following form:

(9)

(10)

where is the Dirac function, is the
Euler constant, and and are real coefficients to
be determined.

The substitution of (9) and (10) in (7) followed by the use
of (31)–(34) gives

(11)
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where , , and

(12)

Proceeding in the same way with (8), one obtains the following
for :

(13)

where .
For , (8) is identically satisfied.

The right-hand term of (12) is expanded using the following
relations:

(14)

(15)

The final result of this expansion can be written as

(16)

In (16) we have denoted

(17)

(18)

(19)

The effective evaluation of integrals (18)–(19) is done numer-
ically by using the Gauss–Laguerre formula [9].

For the time being, let the functions and be
considered as known. We introduce the complex variable
function

(20)

defined in the domain . One can verify that for
(11) and (13) can be written as

(21)

By construction, takes only real values on the imag-
inary axis and according to the symmetry principle [15] we
have

(22)

where the overline denotes the complex conjugate quantities.
The relations of (21) yield the boundary values for the

analytic function along half of the unit circle
, either the real part (for the small arches between

and , ), or the imaginary part (for the small
arches between and ). The boundary
values for the other half of the unit circle are obtained using
(22) and the Volterra problem is completely defined.

In order to transform the Volterra problem into a Dirichlet
problem, we consider the auxiliary complex function

(23)

This function has along the unit circle either real values of
imaginary values. By its construction takes real values
on the arches where we know the real part of and
imaginary values where we know the imaginary part of .

We now define a new unknown function
. The real part of this function is known along

the entire unit circle. This is a Dirichlet BVP for the real part
of the complex function . The complex function can
be obtained by means of Schwartz’s formula [11], [16], shown
in (24), at the bottom of the page, where ,

is the symbol for the union of the arches and
, whereas is the symbol for the union of arches
and .

The unknown coefficients and are the MacLau-
rin expansion coefficients of the function . The infinite
linear system for their determination results by matching the
coefficient of ; on the two sides of (24).
Adding (17), we write the system in the matrix form

(25)

where , ,
. The linear system of (25) is developed

in Appendix B.
In order to compensate for the singularities of the function

in the points, the expression in braces in (24) must
vanish in all these points. Hence, we obtain the following

(24)
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TABLE I

existence conditions:

(26)

where . There are only distinct
compatibility conditions. In fact, due to symmetry, if the
expression in braces in (24) vanishes for , it also
vanishes for .

All the compatibility conditions have the same real
part, which is, in fact, an identity. The coefficient of in the
MacLaurin expansion must be equal to ; this yields
an additional compatibility condition besides (26). Hence, the
compatibility conditions can be written in matrix form as

(27)

Again, the linear system (27) is explicitly given in Appendix
B.

If we eliminate the unknown infinite vector between
(25) and (27), we finally obtain the capacitance matrix of the
given system as follows:

(28)

This relation gives an exact expression of the capacitance
matrix. To obtain a numerical estimation we must truncate
the infinite matrices. For the important case of a symmetric
microstrip coupled line , we derive the linear
systems (29) for even and (30) for odd capacitance considering
four terms in the expansion (20). The notations are those used

in Appendix B:

(29)

(30)

IV. NUMERICAL RESULTS

In order to evaluate the usefulness of (29) and (30), we
consider the particular case of equal dielectric thicknesses

for which closed analytical expressions for
the even and the odd capacitance are available [10]. The
expression of the capacitance can be written as

is the complete elliptical integral of the first kind. is
either the multiplication operator for the even case or the
division operation (/) for the odd case.

The results for various values of and are reported
in Table I ( and ). In any cell the first row
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TABLE II

corresponds to the closed formulas, the second to (29) and
(30) solutions. As it can be seen from Table I, for ,

the error in the approximate is less than 0.5%
while the error in is less than 0.7%.

The multiconductor structure with the parameters ,
, , , ,

, has been analyzed by the present
method and by that proposed in [7] for multiconductor boxed
structures. In order to apply the method developed in [7] we
considered electric and magnetic lateral walls, the minimum
space between the conductors and the lateral wall being five
times the lower dielectric thickness . The
results for the 22 different coefficients of the capacitance
matrix are reported in Table II. The electric lateral-wall case
coefficients are always higher than the unlimited lateral case
coefficients, and both cases give higher coefficients than the
magnetic lateral-wall case which is an expected result.

In order to compare the computer efficiency of the present
method and that of [7] we compare the time necessary to
attain a certain accuracy. Let us denote : the number
of terms in the development of the auxiliary function
(20), ND: the number of the sampling points for the line
integrals (36)–(38) and (43)–(45) NF: the number of points
for the fast Fourier transform (FFT) used to compute the
integrals (39)–(41), (46), and (47). The computation time
and the precision diminish if these numbers decrease. First,
by using higher values for , , and , an asymtotic
capacitance matrix is obtained. Next, is reduced until
the highest relative error in any terms is just smaller than
10 , i.e., if is decremented once more the relative error
for at least one of the capacitance matrix coefficients would
be higher than 10 . We proceeded in the same way with

and . The results are given in Table III.
Under these conditions, using a PC with a Cyrix P-120

processor, the mean computation time was 0.423 s for the
MATLAB implementation of the present algorithm, versus
2.36 s (also in MATLAB) for the other approach. From a
practical point of view the results are equivalent, but the
computation time is reduced more than five times. This result
suggests that the present approach can be used advantageously
for boxed structure with distant lateral walls.

We have considered the case of a multistrip structure

TABLE III

studied by Kammler in [13]. The
results obtained using ten terms in the expansion (20) are
shown below and are identical within the first five digits with
the numerical results given in [13]

In Table IV, the even- and odd-mode characteristic im-
pedances obtained by the present method for a symmetric
coupled microstrip line

are compared with those
obtained in [14] and [17]. The match is very good for the
odd-mode characteristic impedance and good for the even-
mode impedance. The results for the even-mode impedance
are placed between those obtained in [14] and [17]. The even-
mode impedance in [17] is always higher than the results
obtained by the present method. The fact can be related to
the assumption made in [17] that the slot between strips is
a magnetic wall lowering the capacitance and increasing the
characteristic impedance.

V. CONCLUSIONS

A new method for determining the Maxwell capacitance of
a multiconductor microstrip structure is given. The method is
based on solving a system of dual integral equations using a
special representation formula by means of a Volterra BVP.
An exact solution is expressed in terms of infinite matrices
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TABLE IV

which have very good convergence properties. The numerical
examples considered in this paper demonstrate that in practical
cases it is sufficient to consider only a low number of terms
in the representation formula for accurate results. Moreover,
our solution is shown to be computationally efficient for the
case of multiconductor lines.

APPENDIX A

In [8], we have demonstrated the subsequent formulas:

(31)

(32)

From [12], we have the following:

(33)

(34)

where .

APPENDIX B

Here we give the computation relations involved in
Section III. The MacLaurin expansion of the function

must match the corresponding coefficients
resulting in the expansion of the brace in (24) where we

get the following:

(35)

In (35), is the integer part function and we have denoted
the following:

(36)

(37)

(38)

(39)

(40)

(41)

In (39), is a circle inside the unit circle which contains
the origin.

The compatibility conditions (26) can be written in the
following form:

(42)
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In (42), we have denoted the following:

(43)

(44)

(45)

(46)

(47)

Details about the numerical evaluation of the integrals
(36)–(41) and (43)–(47) have been given in [7].
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