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Analytically Determined Quasi-Static Parameters of
Shielded or Open Multiconductor Microstrip Lines

Dorel HomentcovschiMember, IEEE and Radu Oprea

Abstract—An exact analytical expression for the capacitance  Fikioris et al. [5] have given an exact solution for the
matrix of a shielded or open multiconductor microstrip structure  shielded printed microstrip lines by the Carleman—Vekua
is derived by solving the system’s dual integral equations by method. Drakeet al. [6] presented an improved spectral-

constructing a Volterra boundary-value problem (BVP). The d . thod f | i ductor b d mi i
solution is expressed in terms of infinite matrices with very omain method for coplanar muiticonductor boxed microstrip

good convergence properties. This new approach uses a series ofin€s. In [7], an analytical method was given for determining
Bessel functions rather than trigonometric series to approximate the capacitance matrix of boxed multiconductor planar and
the solution which results in an efficient algorithm. Simplified  cylindrical lines. In [8], an analytical solution is given to the

formulas are given for the even and odd capacitance of sSymmetric g6 ghieided or open microstrip problem based on a special
coupled microstrip lines and compared to the results given by

the finite analytical solution available in this particular case. rePresentation formula. _ o
Numerical examples demonstrate that the method yields accurate ~ This paper presents a new analytical determination for the
results and is computationally effective for structures having a capacitance matrix of the planar shielded or open multicon-

large number of conductors. ductor microstrip lines embedded in a multilayered medium.
Index Terms—Boundary-value problems, integral equations, This paper expands on the treatment in [7], where only a
microstrip, multiconductor transmission lines. limited lateral structure was considered. As a consequence of

the domain limitation, the electrical potential was expressed
as a Fourier series. The boundaries conditions led to a dual
o ) ) series equation system, which eventually was transformed into
ICROSTRIP transmission lines have received much \piterra problem. This paper addresses the more difficult
attention in the technical literature in the last 30 years ohlem of the unlimited lateral domains. The electrical po-
Most of the efforts were dedicated to the analysis and elggia| is expressed as a Fourier integral of the spectral-domain
trical characterization of single or coupled microstrip “ne%otential and the boundary conditions lead to a system of dual

The continual increase of system clock speed in integratefleqra| equations. The unknown spectral function is developed

circuit technology has made multiconductortransmiss;ion-linﬁ,ﬁO a special sum of weighted Bessel functions. This sum
analysis a vital tool not only for microwave applications, €.9¢fi|s exactly the boundary conditions everywhere except
paral_lel coupled fiI'Fers.and directiqnal.couplers, but now alsg 5 finite interval. Some subsequent transformations leads
for hlgh—spe(_:;d d'g'ta_l integrated cwcun_s (IC’s). . to a Volterra boundary-value problem (BVP). The particular
Le_t us briefly review some t_heoret_|ca[ methods  relatin pansion permits a drastic reduction of the number of terms
to single and multiconductor microstrip lines. Wheeler [ ecessary to be taken into account in order to obtain an

used approximate conformal mapping and an interpolati [Rcurate solution. Due to the reduced dimension of the system,

technique to calculate the capacity of inhomogeneous sin € method is more efficient than the previous method for

microstrip lines, ?”d Wan [171 usgd a similar method t oxed structures. This method can be extended to support
accurately determine the quasi-static parameters of coup ltilayer structures and noncoplanar strips as was done in

microstrip lines. Analytical or quasi-analytical solutions hav_n]. Due to the similarity, the extension is not presented.

beefn plrowded fotr_a Imgtedlonurgber (t)f C?js?/s Z_ind fzortcer:a Section Il describes the geometry of the shielded multicon-
particular geometries [8]-[10]. Bryant an eiss [2] treate ctor microstrip line. The problem is then formulated as a

;Bﬁc[:irc())r?leyaayatsﬁtamiggdI\%tttn aoTSG]msrggsn?ge;tr:'cai;?esrbﬁal integral equation system, whose solution is expressed
: b YSK a special representation formula, which transforms the

based on a variational principle. Analysis of various plana . . P .
N P P Y ) P t?ntloned system into an infinite system of algebraic equa-
transmission lines have also been carried out in the spectra . . . . .
. ) ions. This solution yields the Maxwell capacitance matrix
domain by Itoh and Mittra [4]. . . o LT )
of the multiconductor microstrip line. Simplified relations are
then given for the even and odd capacitance of symmetric
M ot ved Aoril 25. 1996: revised October 9. 1997 coupled microstrip. Our simplified relations are compared to
anuscript receive pri s , revise ctoper 9, . . . . . .
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vA y = 0 yields an expression representing the total charge, up to
- an additive constant. The condition that the total charge must
be constant for: corresponding to the gaps give the second
D integral equation
1
h £, 00 o
! / A(R)[ex coth (Eh ) + e coth (Ehy)] 2 L) g
Wi S W, S Sn-1, Wn = !
Y I b an > > qo/2sgnx z ¢ (51, bn)
% D - =gqg(z) = i z€(bj,a; +1
he| ZRTBT R I T X 1) =g = —0/2+ i, ¢ = 1( LN Y
4)
Fig. 1. Cross section of the multicondutor microstrip structure. Wheresgna: — _1forz < 0 and senz = 1 for & > 0.
We put
Il. THE GEOMETRY OF THE PROBLEM B(k)
The cross section of the shielded multiconductor microstrip A(k) = [1—n(k)] (5)
. . ) . . . €1 + €2
line to be analyzed in this paper is shown in Fig. 1. It
consists ofV conducting strips of zero thicknegs;, b;], (j = where
1,---, N), with finite widthsw;, - - -, wy, separated bV — 1 ey (coth (khy) — 1) + ez(coth (khy) — 1)
finite gapssy,---,sn~—1, laying on a dielectric substrate be- (k) = e1 coth (khy) + €2 coth (khs) )

tween two parallel ground planes. The structure is considered

infinite in thez-direction. The scale and the origin are taken the functionn(k) has an exponentially decay to zero for
makea; = —1 andby = 1. The relative dielectric constantslarge values of the variablé. As it has been shown in
¢, ande, and the dielectric thickness, and h, of domains [7], the multilayer structures can be analyzed by this method
D; and D, are arbitrary. In particular, foh; — oo the open Mmodifying only the functionn(k).

multiconductor microstrip is obtained. We separate the real and the imaginary part &fk)
We give the solution for the multiconductor microstrigB(k) = B'(k) — iB"(k)) and we take into account the
problem considering only two dielectric substrates. evenness of the real part and the oddness of the imaginary
part of B(k).
ll. ANALYSIS OF THE MULTICONDUCTOR MICROSTRIP LINE Hence, (3) and (4) become

We consider the solution of the microstrip problem in the /Oo [B' (k) cos kx + B" (k) sin kx| dk = (1 + e2)V;
“quasi-static” approximation, i.e., for the frequency range in Jo !

which propagation may be regarded as quasi-TEM. Under this
approximation, the analysis of a multiconductor microstrip line
is reduced to the determination of the Maxwell capacitance
matrix per unit length. The full-wave solution can be obtained [B' (k) sinkx — B (k) cos ka] dk = q(z). 8
based on the “quasi-static” solution proposed in this paper. The 0
authors will present a full wave solution in a future paper. Relations (7) and (8) are the system of dual integral equations
In the quasi-TEM assumption, the electric field in domainghich solve the problem.
D; and D, can be expressed with the aid of the electrostatic \We associate to any poin the anglex; = arcsina,;, and
potential V() (z, y) and V®(z, ) as follows: the complex pointc; = exp (ic;), and to any point; the
o0 . anglef; = arcsinb;, and the complex poini; = exp (i3;).
V(l)(a:, Y) :/ A(k)WeXp (ikx)dk (1) We look for the solution of the dual integral equations
—oo sinh khy system (7) and (8) in the following form:

+ /00 [B'(k)cos kx + B" (k) sin kxn(k) dk  (7)
0

V(e )= [ Ay RER2tY) a2
@)= [ am =i ey ko) k. @) B =250 ] 1 i, 2n0) g

m=1

The functionsV V) (z, y) and V(?(z, y) vanish on the -
planes y = hy apd Yy = —_h?, respectively, and satisfy B'(k) =+ Z (2m — 1) /2m_1<]2m—1(k) (10)
the potential continuity condition on the plape= 0. For k
y = 0andz € (aj,, b;), the potential is constant due to the ) ) ) _ _
conducting strip, and the first integral equation of the probleere é(k) is the Dirac function,c = 0.577216 is the

m=1

is Euler constant, and,, and by, _, are real coefficients to
oo be determined.
/ A(k)exp(ikz) dk =V}, E g ])V 3 The substitution of (9) and (10) in (7) followed by the use
o o ’ of (31)—(34) gives

On each unit length of thgth strip there is a charge;

and the sum of all charges is denotgd = >, . An Z by COS 2m6h + Z by sin(2m — 1)¢ = f;(¢) (11)
integration with respect to of the charge density in the plane m=1 m=1
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where¢ = arcsinz, ¢ € (ay, 5;), j =1,---,N and defined in the domainz| < 1. One can verify that for
z = exp (i¢) (11) and (13) can be written as

@) = (@t )l = Pz [ B s ksing) Re {F(exp (i)} = f5(6), ¢ € (ay. )
+ B"(k)sin (ksin ¢)|n(k) dk. (12) {Im{F(exp (o)} =gi(9), ¢ € (By; aj41).

Proceeding in the same way with (8), one obtains the following BY construction,/'(z) takes only real values on the imag-

(21)

for |z] < 1, (¢ € (=n/2, 7/2)): inary axis and according to the symmetry principle [15] we
have
Z ern cos 27’77,(7) + Z ern 1 SlIl 2m - 1)¢ = gj(d)) (13) F(?) = F(Z) (22)
m=1 m=1

o P _ U where the overline denotes the complex conjugate quantities.
\Ilzvgrere¢>e 1(/3](é)aijs+ilgéé tgallf sa7t]i\sffie dl’ 9i(#) =1 = 5 ¢- The relations of (21) yield the boundary values for the
2] ' y ’ analytic function /'(z) along half of the unit circle(¢ €

rel;zgr:;ght-hand term of (12) is expanded using the follome 7 /2, 7/2]), either the real part (for the small arches between

¢; anddy;, j =1,--+, N), or the imaginary part (for the small
arches betweemj andcj+1, j=1,---,N—1). The boundary
cos (ksin¢) = )+ 22 Jam(k)cos2m¢  (14)  yalues for the other half of the unit circle are obtained using
m=1 (22) and the Volterra problem is completely defined.

In order to transform the \olterra problem into a Dirichlet

=2 m— (2m -1 15 . - .
sin (ksin ) Z Jom—1 (k) sin (2m = 1)¢. (15) problem, we consider the auxiliary complex function

m=1

The final result of this expansion can be written as H T CJ+1 P
qo by —d; 2+ d] .
fl(d)) = (61 + 62)Vj - —1112 + 50

(23)

This function has along the unit circle either real values of

a N . ,
1 Z o %0, 2m Zb%am on | COS 2me imaginary values. By its constructioH (z) takes real values
on the arches where we know the real part6fz) and

m=1 n=1

imaginary values where we know the imaginary parft).
+ Z <Z b’Qn_laQ,,l_l,gn_1> sin (2m — 1)¢. We now define a new unknown functiofi(z) =

F(z)/H(z). The real part of this function is known along

(16) the entire unit circle. This is a Dirichlet BVP for the real part
of the complex functior7(z). The complex functiord7(z) can

m=1 \n=1

In (16) we have denoted be obtained by means of Schwartz's formula [11], [16], shown
0o in (24), at the bottom of the page, whete = exp (arg %),
by =qoao, 0 + Z a0, 2nbby, (17) A; is the symbol for the union of the archgs;, d;) and
’ et (=d;, —¢;), whereasB; is the symbol for the union of arches
2 [ J2(k) — exp(—Fk) (dj, ¢j+1) and (=11, —d;).
ao, 0 I—/O : 3 n(k) dk (18)  The unknown coefficients,,, andZ,,_, are the MaclLau-

rin expansion coefficients of the functidfi(z). The infinite
linear system for their determination results by matching the
coefficient of 2*; (n = 1, 2,---) on the two sides of (24).
Adding (17), we write the system in the matrix form

G :271/ Jn(k)‘]rn(k) 77(]{/_) d/{}, m = 07
0 n=1 .
(19)

The effective evaluation of integrals (18)—(19) is done numer- X(b) = Y (o) + Z(q) (25)
ically by using the Gauss—Laguerre formula [9].

Fo_r the time being, let the_ functiong;(¢) and g,(¢) be_ where (b)t = (b, b/, by, b, -+0), (o)t = (Vi,---, Vi),
considered as known. We introduce the complex varlabagy = (¢, qy). The linear system of (25) is developed
function in Appendix B.

In order to compensate for the singularities of the function
Z b, 2™+ Z vy 2Pt (20) H(z) in the d; points, the expression in braces in (24) must
m=1 m=1 vanish in all these points. Hence, we obtain the following

e 2 ,
_{ = Z/ f“i’ﬁd +Z/ I “g;_?)dz} (24)
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TABLE |
s/h 0.1 0.2 0.5
W/ h| Ceven Coda Ceven Codd Ceven Codd Ceven Codd Ceven Codd
0.1 | 1.0849 3.1379 | 1.1644 2.5766 | 1.3214 2.0258 | 1.4643 1.7599 | 1.5688 1.6291
10861 3.1377 | 1.1645 2.5766 | 1.3214 2.0258 | 1.4643 1.7599 | 1.5688 1.6290
0.2 | 1.3343 3.8332 | 1.4167 3.1708 | 1.5962 2.4857 | 1.7708 2.1459 | 1.9021 1.9787
1.3342 3.8333 | 1.4167 3.1708 | 1.5962 2.4857 | 1.7708 2.1460 | 1.9023 1.9791
0.5 | 1.9717 4.9694 | 2.0572 4.2177 | 2.2625 3.3886 | 2.4777 2.9573 | 2.6445 2.7427
1.9717 4.9693 | 2.0572 4.2175 | 2.2625 3.3885 | 2.4777 2.9576 | 2.6449 2.7451
1 | 29781 6.1723 | 3.0657 5.3922 | 3.2825 4.5105 | 3.5158 4.0414 | 3.6984 3.8061
2.9781 6.1697 | 3.0670 5.3801 | 3.2825 4.5065 | 3.5153 4.0379 | 3.6963 3.8095
2 | 4.9786 8.2185 | 5.0669 7.4323 | 52866 6.5388 | 5.5242 6.0609 | 5.7107 5.8207
4.9786 8.1835 | 5.0668 7.3953 | 5.2861 6.4974 | 5.5206 6.0195 | 5.6904 5.7998
existence conditions: in Appendix B:
N f ( ,) Ceven:—(61+62)[L0A6171+L2A6172+L4A6173]
5 larg z
Z/ |H(;’)|((7g;—d)dzl No 0 0 Lo Op,2 Oo,4
j=1 J i i k Ae = — N2 K(O) 0 - L2 0272 0274
N—1 ) .y N4 K(—2) K(O) L4 04,2 04,4
Ty [ sEE) g (6 =
= /5 |H(2)|(2' — dy) ag 0 —2In2/2xr ag 2 ao 4
ao,2/2m (2,2 Q24 (29)
wherek = 1,---,N — 1. There are onlyN — 1 distinct ao, /4T a4,2 Q4,4
compatibility conditions. In fact, due to symmetry, if the Codd = (e1+€2)[(Q1,1—Q1,2)Acs, 1+(L1,1—L1,2)Acy, 2
expression in braces in (24) vanishes for= dy, it also + (L3, 1 — L3, 2)Acy, 3]
Va/i‘f?r?s strz ! o tibility conditions have th ! O 1 M
e NV —1 compatibility conditions have the same real 4. _ ) 1o p'\ P | |0 a1 aus
part, which is, in fact, an identity. The coefficient gf in the 0 Poy Posl||0 as1 ass
MacLaurin expansion must be equal B§0) = 0; this yields R ' 0 0 '
an additional compatibility condition besides (26). Hence, the n _ML ! K(0) 0 (30)
compatibility conditions can be written in matrix form as Ll
-Ms;: K(-2) K(0)

D() = A{v) + B(q). (27) IV. NUMERICAL RESULTS

. . . . . . . In order to evaluate the usefulness of (29) and (30), we
Again, the linear system (27) is explicitly given in Appendl)ﬁzonsider the particular case of equal dielectric thicknesses
B. . L (h1 = ha = h) for which closed analytical expressions for

If we eliminate the unknown infinite vectoft) between the even and the odd capacitance are available [10]. The
(25) and (27), we finally obtain the capacitance matrix of thgpression of the capacitance can be written as

given system as follows:

C=(c1+6) 2K (k)
= (€1 +€2)—F———
C=(DX"'Z-B)}(A-DX'Y). (28 K(V1-#?)
_ o _ _ k = tanh (W—w) ® tanh <M>
This relation gives an exact expression of the capacitance 4h 4h

matrix. To obtain a numerical estimation we must truncatg (k) is the complete elliptical integral of the first king: is
the infinite matrices. For the important case of a symmetrgither the multiplication operatqr) for the even case or the
microstrip coupled lindw; = ws = w), we derive the linear division operation (/) for the odd case.

systems (29) for even and (30) for odd capacitance considerind he results for various values af/h ands/h are reported
four terms in the expansion (20). The notations are those usedTable | ¢; = 1 ande; = 1). In any cell the first row
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TABLE 1

oo | 14.448 17556 17.705 17.730 -6.6119 -5.9398 -5.8759 -5.8653 -1.4740 -1.1829
e | 14451 17556 17.705 17.731 -6.6104 -5.9393 -5.8755 -5.8650 -1.4730 -1.1823

m | 14.445 17555 17.704 17.730 -6.6134 -5.9404 -5.8762 -5.8656 -1.4752 -1.1832

Css Cis Cas Css Cis Cas Cie Cor Cir C1s

oo [-1.1503 -0.6477 -0.4922 -0.4769 -0.3522 -0.2619 -0.2147 -0.1634 -0.1456 -0.1383

e 1-1.1500 -0.6469 -0.4918 -0.4765 -0.3515 -0.2615 -0.2140 -0.1629 -0.1448 -0.1369

m |-1.1507 -0.6486 -0.4927 -0.4773 -0.3531 -0.2623 -0.2155 -0.1639 -0.1466 -0.1400

corresponds to the closed formulas, the second to (29) and TABLE Il
(30) solutions. As it can be seen from Table I, ot < s/h,
w/h < 2 the error in the approximat€,..,, is less than 0.5% Present Method | Method from [2]

while the error inC,qq is less than 0.7%.
The multiconductor structure with the parametéfs— 8,

Parameter | Initial | Final | Initial | Final

€0 = 129, ¢ = 1, hy = 16, hy = 100, w; = --- = NT 20 8 40 22
wg = 1, s1 = ---s7 = 1 has been analyzed by the present
method and by that proposed in [7] for multiconductor boxed ND 64 8 64 44

structures. In order to apply the method developed in [7] we
considered electric and magnetic lateral walls, the minimum
space between the conductors and the lateral wall being five
times the lower dielectric thickness, = sg = 80). The 2,s; = ... = 54, = 1) studied by Kammler in [13]. The
results for the 22 different coefficients of the capacitangesults obtained using ten terms in the expansion (20) are
matrix are reported in Table Il. The electric lateral-wall casshown below and are identical within the first five digits with
coefficients are always higher than the unlimited lateral cagg numerical results given in [13]
coefficients, and both cases give higher coefficients than the
magnetic lateral-wall case which is an expected result. Cn = Cs5 =2.89143  Ch3 = O35 = —0.07942

In order to compare the computer efficiency of the present  Cy = Cyq = 3.29387 Cy = Cos = —0.01174
met_hod and that of [7] we compare the time necessary to Css = 3.29609 Chy = —0.07512
attain a certain accuracy. Let us dend¥l”: the number
of terms in the development of the auxiliary functidfy(z) C12 = Cy5 = —1.00608 €15 = —0.00197
(20), ND: the number of the sampling points for the line Coz = C34 = —0.97638 Cj; = Cj;.
integrals (36)—(38) and (43)—(45) NF: the number of points L
for the fast Fourier transform (FFT) used to compute the N Table IV, the even- and odd-mode characteristic im-
integrals (39)—(41), (46), and (47). The computation timeedances _obtaln_ed _by the present method for a symmetric
and the precision diminish if these numbers decrease. Fi@upled microstrip ling(N = 2, ¢, = 2.35, ¢, = 1, by =
by using higher values foNT, ND, and NF, an asymtotic 1, k2 = o0, s = 1, w1 = wp = w) are compared with those
capacitance matrix is obtained. Nexy/T" is reduced until Obtained in [14] and [17]. The match is very good for the
the highest relative error in any terms is just smaller thaifld-mode characteristic impedance and good for the even-
1073, i.e., if NT is decremented once more the relative errénode impedance. The results for the even-mode impedance
for at least one of the capacitance matrix coefficients wouéde placed between those obtained in [14] and [17]. The even-
be higher than 10°. We proceeded in the same way wittmode impedance in [17] is always higher than the results
ND and NF. The results are given in Table III. obtained by the present method. The fact can be related to

Under these conditions, using a PC with a Cyrix P-12he assumption made in [17] that the slot between strips is
processor, the mean computation time was 0.423 s for thenagnetic wall lowering the capacitance and increasing the
MATLAB implementation of the present algorithm, versusharacteristic impedance.
2.36 s (also in MATLAB) for the other approach. From a
practical point of view the results are equivalent, but the V. CONCLUSIONS

computation time is reduced more than five times. This resultA new method for determining the Maxwell capacitance of
suggests that the present approach can be used advantage@ugiMlticonductor microstrip structure is given. The method is
for boxed structure with distant lateral walls. based on solving a system of dual integral equations using a
We have considered the case of a multistrip strucfife= special representation formula by means of a \olterra BVP.
566 = 1,ea = 1, hy = 5, hy = 5, w; = --- = wy = An exact solution is expressed in terms of infinite matrices

NF 512 64 512 128
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TABLE IV get the following:
E(p/2) E((p+1)/2)
Present Method Wan Hammerstad Z K(p _ 271) /2 — Z K(p +1-— 271) /2/ .

n=1
and Jensen

W/h Zeven Z odd Zeven Z odd Zeven Zodd 61 +62 ZLP jV + Z < p,JZ (.Zl>
0.05 | 260.83 | 198.985 | 262.30 | 198.62 | 255.07 | 200.35 o
i3 @0, 2m
0.10 | 227.093 | 168.415 | 228.83 | 168.17 | 224.14 | 168.43 T <__L T Z o Op, 2m
m=1
0.25 | 180.567 | 129.94 | 182.43 | 129.86 | 179.65 | 129.73
. / /
0.50 | 143.599 | 102.91 | 14533 | 102.94 | 143.43 | 102.87 N ZM S z_:(‘” hoky
0.75 | 121.631 | 88.027 | 123.18 | 88.10 | 12L.69 | 88.01 o N
+ b n@2m, 2n o , 2m
1.00 | 106.247 | 77.891 | 107.62 | 77.98 | 106.37 | 77.85 ,; nz::l 2 g
1.25 | 94.638 29 | 95.85 | 70.3 . . o
70.2 5 9 | 94.75 | 70.22 + <Zb/2n—la2"l—1:2n_l> P, Qm_ll.
175 | 78.026 | 59.341 | 78.97 | 59.43 | 78.09 | 59.25 (35)
2.25 | 66.582 | 51.661 | 67.34 | 51.84 | 66.59 | 51.56 In (35), E(x) is the integer part function and we have denoted
the following:
which have very good convergence properties. The numerical o 1/ dz’
examples considered in this paper demonstrate that in practical P Ja, [H(2)|(2)p+t
cases it is sufficient to consider only a low number of terms 1
in the representation formula for accurate results. Moreover, L,= _ZLP j (36)
our solution is shown to be computationally efficient for the
case of multiconductor lines. M 1/ dz' 37)
APPENDIX A Pl Bj |H(2')|(=" )+t
In [8], we have demonstrated the subsequent formulas: N Z arg‘ d7 (38)
p |H p+1
Jo(k) 2 B;
/ ) aes(t) | coskwdk =lnF, o] <1 T
0 Kiry==—¢ ——dz (39)
(31) 2 Jo, H(2)
JO(k) . %Sgnx, |.’L’| >1 27n ) 2m
/0 |: A +2Cé(/€) sin kkx dk = arcsinai, |.’L'| < 1. Op7 2m = 27{_2/ )p+1 dZ/ (40)
(32)
an 1 (zl)—an-l—l
From [12], we have the following: Py om—1 = 27”2/ () dz'. (41)
/ MCOS Lxdk In (39), C; is a circle inside the unit circle which contains
0 the origin.
[ 525 cos((2p — 1) arcsinz), lz| <1 The compatibility conditions (26) can be written in the
=< 2p-1 g
0, lz] > 1 following form:
(33) N N-1 J
o> . . . !
) @+ 300 (13 )
o k j=1 j=1 =1
_ [1/2psin(2p arcsinz), lz| <1 0, 2m Nl
{7 I S R YR D
m=1
wherep =1, 2,---
+ b/ nCL m, 2n T m
APPENDIX B g__:l <nz=:1 anf2m, 2 ) 2
Here we give the computation relations involved in °0
Section lll. The MaclLaurin expansion of the function Zblgn_chQm—l,Qn—l Uk, 2m-1| = 0.
F(z)/H(z) must match the corresponding coefficients n=1

resulting in the expansion of the brace in (24) where we (42)
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In (42), we have denoted the following: [11] D. Homentsovschi, EdGomplex-Variable Function and Application in
Science and Techniquén Romanian). Bucharest, Romania: Tehnica,
1 dz' 1986.
Qk,; =Im — m (43) [12] I. S. Gradshteyn and |. M. RyzhikTable of Integrals, Series, and
Tt JA, Z)INE k Products 5th ed. New York: Academic, 1994.

[13] D. W. Kammler, “Calculation of characteristic admittances and coupling

R - —Im i dz' (44) coefficients for strip transmission linedEEE Trans. Microwave Theory
k, g 7i Jg., [H(Z)|(z' — di) Tech, vol. MTT-16, pp. 925-937, Sept. 1968.
7 [14] E. Hammerstad and O. Jensen, “Accurate models for microstrip
N-1 1/ arg 2’/ dz computer-aided design,” ilEEE MTT-S Int. Microwave Symp. Djg.
Sy = Z Im _/ T ” (45) Washington DC, 1980, pp. 407-409. N o )
° TS5, |H(z/)|(z/ — dk) [15] C. lacob, Introduction Mathematiquea la Mécanique des Fluides.
J=1 ’ Paris, France: Gauthier-Vilars, 1959.
N [16] L. V. Kantorovich and V. I. Krylov,Approximate Methods of Higher
1 () 4 ()72 Analysis. Noordhoff, The Netherlands: Groningen, 1964.
Tk, 2m = Im 2— Z 7 _d dz (46) [17] C. Wan, “Analytically and accurately determined quasi-static parameters
G j=1745 | (z )|(z - k) of coupled microstrip lines,’TEEE Trans. Microwave Theory Teclvol.

44, pp. 75-79, Jan. 1996.
/)an—l _ (zl)—an-I—l

N
1 (z

om—1 =1 5 Z'

Uk, 2m-1 = Im 2”;/3- H (| = dn) dz

(47)

Details about the numerical evaluation of the integrar'" - DOéelljrl]*gn;entCOVS;:hi (l\/lt’th)UreceiV_?d t}[\g MHSc. t

. . an .D degrees from the University of Bucharest,

(36)—(41) and (43)—(47) have been given in [7]. Bucharest, Romania, in 1965 and 1970, respectively.
In 1970, he joined the Polytechnic Institute of
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